Preliminary Draft



Building an API

That people will actually use




In this session we will:

Define "API"

Discuss API best practices

Expose a Drupal installation via an API
Support API| developers by providing:

o Documentation
o SDKs
o Example implementations

e |earn to plan for the future




What is an API?

e Application Programming Interface

e EXxpose your data to the world

e EXxpose your application via two-way
communication

e Enable developers to extend your
application



Why expose an API?

Extend the reach of your and data

Expand implementations of your application
Crowdsource feature development

Reach a wider audience



What is a *good* API?

Logically represent your application and data
Support multiple request formats

Provide multiple response formats

Support developers

Plan for the future



Path patterns

Define objects granularly

Use plural nouns

Use query parameters for filtering
Avoid using verbs; use HT TP methods
Bonus: shallow/depth




Dos and Don'ts

Don't Do

e /api/vi/nodes/[node id] e /api/v1/articles/[article id]
o nodes don't define objects o content types define objects
e /api/vi/Nvideo/|video id] e /api/v1/videos/[video id]
o non-plural nouns o plural denotes a container
e /api/vi/videos/funny e /api/vi/videos?category=funny
o filters in path o query strings are better
e /api/vi/videos/create e POST /api/v1/videos
o verbs in path o use HTTP methods
e /api/vi/Nvideos/[video idl/ e /api/v1/comments?content=
comments video&id=[video id]
o ideally, avoid traversing o query strings offer many

more than two levels benefits



Services

drupal.org/project/services




Services

The Services module exposes elements of your
Drupal installation via an API.

e Built-in request formats:
o bencode, json, jsonp, php, rss, xml

e Built-in response formats:
o json, xml, form-data, etc.



Data exposure methods

e Baked-in methods
o CRUD operations, Relationships, and Actions



Screenshot of baked-in Services operations



Data exposure methods

e Baked-in methods
o CRUD operations, Relationships, and Actions

e Content API

o drupal.org/project/contentapi



Screenshot of Content API options



Data exposure methods

e Baked-in methods
o CRUD operations, Relationships, and Actions

e Content API

o drupal.org/project/contentapi

e Custom methods
o hook services resource()



Example hook_services resource() implementation




Authentication

e Drupal session
e OAuth

e Custom authentication methods



Introducing:
Services Documentation

drupal.org/project/services _documenation




Support developers

1. Documentation
2. Examples
3. SDKs



Documentation

e Automatically generate documentation for
resources, operations, and arguments

e Provide request and response examples

e Version Control!

e Fully themable!ll



Example of a documentation implementation



Offer SDKs that developers can implement to
use your API:

e Facilitate rapid application development
e Provide a language-agnostic service
e Empower a community to grow organically



Example of an SDK implementation



Provide examples of applications that harness
your API with or without an SDK.

Widgets
Interfaces
jQuery plugins
Mobile apps




Example of an example implementation



Planning ahead

Future-proofing your API




Versioning

e Only release "major versions”
e Avoid deprecation which breaks third-party
applications



Mitigating growth

e API platform providers

(Mashape, Mashery, 3scale, Apigee, Mulesoft)
Authentication

Response caching

Analytics

Integrate multiple APIs behind a facade

O O O O



Thanks for listening!

Now go build something awesome



Resources



