
Preliminary Draft

Building an API
That people will actually use

In this session we will:
● Define "API"
● Discuss API best practices
● Expose a Drupal installation via an API
● Support API developers by providing:

○ Documentation
○ SDKs
○ Example implementations

● Learn to plan for the future

What is an API?
● Application Programming Interface
● Expose your data to the world
● Expose your application via two-way

communication
● Enable developers to extend your

application

Why expose an API?
● Extend the reach of your and data
● Expand implementations of your application
● Crowdsource feature development
● Reach a wider audience

What is a *good* API?
● Logically represent your application and data
● Support multiple request formats
● Provide multiple response formats
● Support developers
● Plan for the future

Path patterns
● Define objects granularly
● Use plural nouns
● Use query parameters for filtering
● Avoid using verbs; use HTTP methods
● Bonus: shallow/depth

Dos and Don'ts
Don't
● /api/v1/nodes/[node_id]

○ nodes don't define objects
● /api/v1/video/[video_id]

○ non-plural nouns
● /api/v1/videos/funny

○ filters in path
● /api/v1/videos/create

○ verbs in path
● /api/v1/videos/[video_id]/

comments
○ ideally, avoid traversing

more than two levels

Do
● /api/v1/articles/[article_id]

○ content types define objects
● /api/v1/videos/[video_id]

○ plural denotes a container
● /api/v1/videos?category=funny

○ query strings are better
● POST /api/v1/videos

○ use HTTP methods
● /api/v1/comments?content=

video&id=[video_id]
○ query strings offer many

benefits

Services
drupal.org/project/services

Services
The Services module exposes elements of your
Drupal installation via an API.

● Built-in request formats:
○ bencode, json, jsonp, php, rss, xml

● Built-in response formats:
○ json, xml, form-data, etc.

Data exposure methods
● Baked-in methods

○ CRUD operations, Relationships, and Actions

Screenshot of baked-in Services operations

Data exposure methods
● Baked-in methods

○ CRUD operations, Relationships, and Actions

● Content API
○ drupal.org/project/contentapi

Screenshot of Content API options

Data exposure methods
● Baked-in methods

○ CRUD operations, Relationships, and Actions

● Content API
○ drupal.org/project/contentapi

● Custom methods
○ hook_services_resource()

Example hook_services_resource() implementation

Authentication
● Drupal session
● OAuth
● Custom authentication methods

Introducing:
Services Documentation
drupal.org/project/services_documenation

Support developers
1. Documentation
2. Examples
3. SDKs

Documentation
● Automatically generate documentation for

resources, operations, and arguments
● Provide request and response examples
● Version Control!
● Fully themable!!!

Example of a documentation implementation

SDKs
Offer SDKs that developers can implement to
use your API:
● Facilitate rapid application development
● Provide a language-agnostic service
● Empower a community to grow organically

Example of an SDK implementation

Examples
Provide examples of applications that harness
your API with or without an SDK.
● Widgets
● Interfaces
● jQuery plugins
● Mobile apps

Example of an example implementation

Planning ahead
Future-proofing your API

Versioning
● Only release "major versions"
● Avoid deprecation which breaks third-party

applications

Mitigating growth
● API platform providers

(Mashape, Mashery, 3scale, Apigee, Mulesoft)
○ Authentication
○ Response caching
○ Analytics
○ Integrate multiple APIs behind a facade

Thanks for listening!
Now go build something awesome

Resources

